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We calculate the magnetic phase diagram of the half-filled t-t�-U Hubbard model as a function of t� and U,
within the Gutzwiller approximation plus random-phase approximation. As U increases, the system first
crosses over to one of a wide variety of incommensurate phases, whose origin is clarified in terms of double
nesting. We evaluate the stability regime of the incommensurate phases by allowing for symmetry breaking
with regard to the formation of spin spirals, and find a crossover to commensurate phases as U increases and
a full gap opens. The results are compared with a variety of other recent calculations, and in general good
agreement is found. For parameters appropriate to the cuprates, double occupancy should be only mildly
suppressed in the absence of magnetic order, inconsistent with a strong-coupling scenario.
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I. INTRODUCTION

An important issue in the Hubbard model is the nature of
the metal-insulator transition, whether it is more Mott type
�driven by suppression of double occupancy, with no accom-
panying magnetic order� or more Slater type �associated with
magnetic order and a Stoner-factor instability�. The question
is rather subtle since, for instance, a Mott phase can have a
significant exchange coupling, which can lead to a parasitic
magnetic order at low temperatures. Alternatively, critical
fluctuations in a two-dimensional system will drive the mag-
netic ordering temperature to zero �Mermin-Wagner theo-
rem� while leaving behind a finite temperature pseudogap.
Recently Tocchio, Becca, Parola, and Sorella �TBPS� �Refs.
1 and 2� carried out a variational calculation of the t-t�-U
Hubbard model at half filling, and found that the whole T
=0 phase diagram, Fig. 1 is dominated either by paramag-
netic phases or by phases with long-range magnetic order
�lower solid line �green��, except for a small window of non-
magnetic insulator �“spin liquid”—dashed green line�. Here
we show that the ordered magnetic phase boundaries can be
well reproduced by simpler Gutzwiller calculations, and that
all of these instabilities are only weakly renormalized from
the random-phase approximation �RPA� values. These calcu-
lations are sufficiently simple that full allowance can be
made for incommensurability �TBPS only studied antiferro-
magnetic �AFM� order at �� ,�� and �� ,0��, leading to a
much richer phase diagram. The domain where TBPS found
the spin liquid phase is characterized by a large number of
competing phases, leading to potential frustration.

The t-t�-U model is often used to describe the supercon-
ducting cuprates so the phases we find can be of relevance in
understanding the pseudogap.3 However, the applications of
the model extend far beyond. In strong coupling the t-t�-U
model at half-filling maps into the famous J1-J2 model, one
of the most studied models to describe frustrated spin sys-
tems and the resulting striped antiferromagnetism. Both the
Ising and the Heisenberg versions have been studied exten-
sively, and in addition to cuprates and pnictides, the model

has been applied to other materials including CuMnO2 or
YBaCoO.4 The t-t�-U model provides a different T=0 route
to the melting of the classical orders which is of interest in
its own right and as such has been studied by many authors.
The �� ,0� order which appears for large t� is not of rel-
evance for cuprates but may have applications in other sys-
tems including the pnictides.

Using a Gutzwiller approximation �GA�, Brinkman and
Rice �BR� �Ref. 5� found a sharp metal-insulator transition at
a critical U=UBR, where the effective mass diverges and the
average double occupancy nd goes continuously to zero. The
BR line is UBR=8�Ek�, where Ek is the average kinetic energy
per carrier below the Fermi energy EF. While the sharp
second-order transition is now known to be an artifact of the
simplified variational scheme,6 UBR signals a crossover to a
regime of small nd, and hence can still serve as a measure of
strong correlations. Thus in infinite dimensions where the
critical value of U for a Mott transition can be obtained
exactly, the GA overestimates the exact value by �16%. For
example, for the Bethe lattice it has been found that Uc
=1.47W,7 with W the bandwidth, to be compared with UBR
=1.70W. Thus UBR provides the correct scale of the Mott
transition in the sense of dynamical mean-field theory.

FIG. 1. �Color online� Phase diagram, as a function of U and t�,
showing UBR �upper solid line �red�� and calculations from Ref. 1

�green lines�. Shown also are GA+RPA calculations ŨGA in which
the momentum of the instability is restricted to be �� ,�� �dashed
blue lines� or �� ,0� �dot-dashed blue lines�.
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However, we will show in the present paper that the BR
transition usually takes place at much larger U than a mag-
netic instability toward an incommensurate magnetic state.
We will give a detailed analysis of these instabilities in terms
of double nesting and discuss the differences between
Hartree-Fock �HF� and the GA approach concerning the
magnetic phase diagram. Before presenting the correspond-
ing results in Sec. III we briefly introduce the model and
formalism in Sec. II and conclude our discussion in Sec. IV.

II. MODEL AND FORMALISM

Our starting point is the two-dimensional one-band Hub-
bard model,

H = �
i,j,�

tijci,�
† cj,� + U�

i

ni,↑ni,↓, �1�

where ci,� �ci,�
† � destroys �creates� an electron with spin � at

site i and ni,�=ci,�
† ci,�. U is the on-site Hubbard repulsion

and tij denotes the hopping parameter between sites i and j.
In the present paper we restrict to hopping between nearest
��t� and next-nearest ��t�� neighbors leading to a disper-
sion in momentum space �k

0 =−2t�cos�kx�+cos�ky��
−4t� cos�kx�cos�ky�.

Our approach is based on a generalized GA �Ref. 8�
supplemented with Gaussian fluctuations �GA+RPA� �Ref.
9� in order to evaluate the magnetic instabilities. Since in the

following we will also calculate spiral states we use a spin-
rotational invariant Gutzwiller energy functional as derived,
e.g., in Ref. 10,

EGA = �
i,j

tij��i
†zizj�j	 + U�

i

Di �2�

and Di denote the variational �double occupancy� param-
eters.

We have also defined the spinor operators as

�i
† = �ci↑

† ,ci↓
† � �i = 
ci↑

ci↓
�

and the z matrix as

zi =�zi↑ cos2�i

2
+ zi↓ sin2�i

2

Si
−

2Si
z �zi↑ − zi↓�cos �i

Si
+

2Si
z �zi↑ − zi↓�cos �i zi↑ sin2�i

2
+ zi↓ cos2�i

2


with

tan2 �i =
Si

+Si
−

�Si
z�2 .

In the limit of a vanishing rotation angle �, the z matrix
becomes diagonal and the renormalization factors,

zi� =

��1 − �i + Di�
1

2
�i +

Si
z

cos��i�
− Di� +�Di
1

2
�i −

Si
z

cos��i�
− Di�

�
1

2
�i +

Si
z

cos��i�
�
1 −

1

2
�i −

Si
z

cos��i�
�

reduce to those of the standard GA ��z0 for a paramagnetic
system�.

To compute the magnetic instabilities one can derive an
equation similar to the Stoner criterion UHF=1 /max��0�q��
in HF+RPA. Here

�0�q� = −
1

N
�
k,�

nk+q,� − nk,�

�k+q
0 − �k

0

denotes the bare static susceptibility and the maximum is
taken over all q values. In order to derive the corresponding
condition within the GA one has to calculate the response of
the system to an external perturbation which couples to the
spin degrees of freedom. This can be achieved by expanding
the energy functional Eq. �2� up to quadratic order in the
�spin� density fluctuations11 which yields the generalized GA
Stoner criterion,

max�UGA�0�q�� = 1 �3�

with an effective magnetic interaction

UGA = �Nq + Mq�2Ē1 + Mq�Ē1
2 − Ē2

2��0/z0
2��/z0

2. �4�

The parameters Nq and Mq=z0�z�−z+−� � are defined in the
appendix of Ref. 12 and

Ēi=1,2 = −
1

N�0
�
k,�

��k+q
0 + �k

0�ink+q,� − nk,�

�k+q
0 − �k

0 . �5�

As discussed in Refs. 3 and 12 the effective magnetic
interaction UGA�U and saturates as the bare U→	 whereas
in HF+RPA, U can be arbitrarily large. As a consequence,
for a given momentum q HF+RPA yields a magnetic tran-
sition at any doping whereas the corresponding instabilities
within the GA are usually confined to a specific doping
range.
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The stability analysis of the paramagnetic phase �which
leads to the generalized Stoner criterion Eq. �3�� was comple-
mented by total-energy computations of a subset of the pos-
sible incommensurate states expected above the instability
line. Namely, we considered spiral solutions by minimizing
EGA with respect to a homogeneous rotation of spins with
wave vector Q,

Si
x = S0 cos�QRi� , �6�

Si
z = S0 sin�QRi� . �7�

In the next section we compare our results with those of
TBPS which are based on a Gutzwiller variational calcula-
tion �without making the GA�. In their approach magnetic
phases are based on HF ground states while the spin liquid
phase is based on a BCS ground state. The calculations go
beyond simple Gutzwiller by including a Jastrow factor and
a backflow correction.

III. RESULTS

Figure 1 compares the t� / t-U phase diagram of TBPS
�Refs. 1 and 2� �green lines� with the Brinkman-Rice transi-
tion UBR �red solid line� and with the Gutzwiller transition

ŨGA, restricted to only �� ,�� ��� ,0�� magnetic order
�dashed �dotted� blue line�. It is seen that while the spin
liquid phase falls above UBR, magnetic phases arise for much
lower U’s, and the commensurate GA transitions are in ex-
cellent agreement with UTBPS. Since the phase boundaries
depend only on �t��, we illustrate only the situation t�
0
appropriate to the cuprates.

However, in general competing incommensurate phases
become unstable first, due to Fermi-surface nesting, Fig.
2�a�, which compares the full UGA �blue line� with UHF
�brown line�. While the HF+RPA calculation overestimates
the stability of the magnetic phase, the overestimate is not
very large.13 Moreover, in all cases the most unstable q vec-
tor �along these symmetry lines� is the same for the HF
+RPA and the GA+RPA calculations. Thus the main effect
of the GA is to renormalize U→UGA
U, thereby reducing
the range of the magnetic ordered phases. In Fig. 2�a� the
HF+RPA calculations are coded with variously colored
circles which match the points in Fig. 2�b�, denoting the
ordering q vectors. These changes are associated with the
evolution of the Fermi surface �FS� with t�, as discussed
below.

Since the experimental U’s in cuprates fall in the range
�6–8t, Fig. 1 suggests the cuprates are closer to Slater than
to Mott physics. Within the BR model, the double occupancy
at half filling is given by nd /nd0=1−U /UBR, where nd0
=0.25 is the uncorrelated double occupancy. In Fig. 2�c� es-
timates for the double occupancy nd are plotted within the
GA, for an assumed U=8t and 10t, representative of the
cuprates. The modest reduction in nd explains why the HF
+RPA results are relatively accurate. An experimental esti-
mate of U /UBR, and hence of nd /nd0, can be gotten from the
renormalized mass m�, which is given by m /m�=1
− �U /UBR�2 �circles in Fig. 2�c��.14,15 The present results are

consistent with the small observed enhancement of the effec-
tive mass. Thus cuprates are far from the extreme Mott limit
assumed, for instance, in the t-J model. It is interesting to
remark that the mean-field AFM suppresses double occu-
pancy so well that Gutzwiller projection on an AFM ground
state actually increases double occupancy.6

In Fig. 2, it must be kept in mind that UHF and UGA define
the onset of the magnetic instability, via a Stoner criterion.
As U increases beyond the onset, a finite gap is opened and
the optimal q can change. At large U the entire Fermi surface
is gapped and the q’s which produce the largest gaps are
favored.

In order to access this crossover to commensurate phases
we compute the energies of spiral textures within the spin-
rotational invariant extension of the GA �Refs. 11 and 16� as
outlined in Sec. II. The most stable spiral is determined by
searching for the spiral wave vector Qmin which minimizes
the GA energy. For values slightly larger than UGA we con-
sistently find the minimum of the energy landscape
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FIG. 2. �Color online� �a� Phase diagram obtained including the
regime of incommensurate phases, comparing UHF �brown line with
symbols� and UGA �dark blue line�. Shown also is the line of first-
order transitions to commensurate �� ,�� or �� ,0� order �light
green solid line� and the �� ,�� to �� ,0� crossover line �light green
dashed line�. For ease in comparisons, the TBPS crossover line
�green dotted line� from Fig. 1 is reproduced. To illustrate the domi-
nant q vector �Fig. 2�b��, the HF+RPA points are color coded and
numbered consecutively, although only some of the numbers are
indicated. �b� Position of the dominant susceptibility peak in HF
+RPA; color code and numbers match the values in �a�. Note that
some extra, metastable points are included, not shown in �a�. Blue
dotted line traces evolution of stable points. �c� nd /nd0 as a function
of t�, assuming a constant U=8t �red line� or 10t �blue line�. Here
nd is the double occupancy and nd0=0.25 is its uncorrelated value.
Symbols indicate values of nd /nd0 estimated from experimental dis-
persion renormalization Zdisp as a function of t�, from Ref. 13.
Letters refer to L=La2−xSrxCuO4; N=Nd2−xCexCuO4��; B
=Bi2Sr2CaCu2O8.
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Emin�Qmin� close to the momenta of the instabilities as shown
in Fig. 2�a�. Upon further increasing U / t and depending on
t� / t the momenta Qmin shift either toward the diagonal
�0,0�→ �� ,�� or toward the line �� ,0�→ �� ,��. For a criti-
cal U / t one then finally finds a first-order transition toward
either Néel order Q= �� ,�� or toward linear antiferromag-
netic �LAF� order at Q= �� ,0� �or equivalently Q= �0,���.17

This first-order transition involves a topological transition of
the Fermi surface, from a spiral phase with pockets to a fully
gapped commensurate phase.

In Fig. 2�a� we show the first-order line �light green� as an
upper boundary for the incommensurate regime together
with UGA as the lower transition �blue line� between incom-
mensurate spin spirals and paramagnet. The boundary be-
tween Néel and LAF order �light green dashed line� is close
to the corresponding transition found by TBPS �Refs. 1 and
2� �green dotted line�. Note that the �charge-rotationally in-
variant� GA samples all possible incommensurabilities so we
confirm that the two ordered phases studied by TBPS are not
unstable toward canting of the spins. Within the present
scheme there is no energy gain for projected BCS wave func-
tions in the repulsive Hubbard model. Therefore, while our
simplified scheme allows for a detailed determination of
magnetic phase boundaries we cannot access the spin liquid
regime found by TBPS �cf. Fig. 2�c��. We also would like to
point out that besides spiral textures the incommensurate re-
gime may also contain spin-density wave solutions with an
associated small charge-density modulation. However, for
selected solutions we have checked that this has only a mar-
ginal influence on the first-order transition line which in Fig.
2 is on the order of the linewidth.

Figures 3 and 4 show how the FS evolves with t� and how
this is reflected in the peak susceptibility. Figure 3�a� dis-

plays a map of �0�q� for t�=−0.55t, showing that �0 is domi-
nated by a complex series of ridges, partly defining a
diamond-shaped plateau centered at �� ,��. The origin of
these structures is readily apparent from Fig. 3�b� using the
concept of nesting curves. For the generic case of two Fermi-
surface segments, a nesting curve can be defined as the locus
of all points q=kF1−kF2, where kFi is a point on the ith FS,
FSi, with the restriction that when FS1 is shifted by q it is
tangent to FS2. For the parameters of Figs. 3�a� and 3�b� one
has one Fermi surface and the nesting curve is simply given
by q=2kF, where kF is the �anisotropic� Fermi wave vector.
The case of two Fermi surfaces is discussed below. The
dashed lines are extensions of the nesting curves folded back
into the first Brillouin zone �BZ�. It can be seen that all of the
sharp structure in �0 falls along this nesting curve, and the
susceptibility peaks correspond to points where two branches
of the curve cross. These values indicate q vectors which
nest the FS, and the crossing points correspond to double
nesting, along two separate regions of the FS �see Fig. 4�.

Figures 3�a� and 3�b� illustrate the typical behavior at
small �t�� �appropriate for cuprates�. From Figs. 2�a� and
2�b�, the peak susceptibility is seen to be approximately
commensurate at �� ,�� for �t���0.23t �brown circles�, then
becomes vertically incommensurate ��−� ,�� for 0.23

 �t� / t��0.55 �blue circles�. For 0.55
 �t� / t��0.72, a diag-
onal incommensurate ��−� ,�−�� phase arises �green
circles�. Competition between these two phases, correspond-
ing to the points A and B in Fig. 3�a�, is also found in hole-
doped cuprates.3 The positions of A and B are readily deter-
mined, Fig. 3�b�. Peak A lies along the zone boundary �qxa
=�� with

qya = 2 arccos
− EF

2t
� �8�

while peak B follows the zone diagonal �qx=qy� with

qxa = 2 arccos��EF

4t�
� . �9�

The only exception to this rule is the extended nearly com-
mensurate region near �� ,�� for small �t��.

FIG. 3. �Color online� �a� Plot of bare susceptibility �0 in the
first Brillouin zone, for t�=−0.55, at half filling. �b� Similar plot
with nesting curve �solid line� and its folded replicas �dashed lines�.
�c� and �d� Similar plots for t�=−0.73, with additional susceptibility
peaks and nesting curves, as discussed in text.
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FIG. 4. �Color online� Fermi surfaces �red and blue lines� and
the q-shifted versions, illustrating two �competing� examples of
double nesting. Data are for t�=−0.73t, x=0, as in Figs. 3�c� and
3�d� �arrows�. Labeled dots denote the double nesting points A1, A2,
B1, and B2.
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The topology of the band dispersion undergoes a drastic
change at �t��=0.5t. At that ratio the Van Hove singularity
�VHS� moves down to the bottom of the band, leading to a
dispersionless band along the x and y axes. Beyond �t� / t�
=0.5, the VHS moves away from the band bottom but now
the point  changes from the band minimum to a local maxi-
mum, opening the possibility of a second FS section. At
�t��=0.71t, this section crosses the Fermi level at half filling,
leading to a more complicated susceptibility map, Figs. 3�c�
and 3�d�, with a second q=2kF2 nesting curve �blue line�
centered on , as well as a q=kF2−kF1 nesting curve �green
line�. In all cases the nesting curves match the positions of
sharp structure in �0. �For the inter-FS nesting, the q value
corresponds to shifting one FS until it is tangent to the sec-
ond.� This leads to a greatly increased number of nesting
curve intersections, and the �0 peak shifts, first, briefly, to a
kF1-mixed nesting-curve intersection �orange line in Fig.
2�b��, then to a kF2-mixed nesting curve �violet line�. Figure
4 provides an example of double nesting, showing two com-
peting q peaks, corresponding to A and B in Fig. 3�c�. Here
nesting vector A �green arrows� involves double nesting of
the large FS �green FSs� while in B �orange arrows� one
nesting involves the large FS �brown FS� but the other in-
volves nesting between the large FS and the -centered
pocket �orange FS�.

IV. CONCLUSIONS

Increasingly, it is becoming clear that many of the com-
plications of strongly correlated systems have to do with
competing phases, whether leading to nanoscale phase sepa-
ration, “stripes,” or frustration. However, part of the problem
is a very incomplete understanding of phase competition
even at weak coupling, and how the competing phases
evolve between weak and strong couplings. In this sense the
magnetic instability of the two-dimensional Hubbard model
provides an ideal case study, having a parameter space which
is two dimensional �qx ,qy�. In HF+RPA U is constant and
the competition reduces to finding the maximum of �0
�Stoner criterion�. We find that the Gutzwiller correction

leads only to quantitative �close to numerical results� and not
qualitative �gain/loss of new phase� changes. Hence, the
nesting curves introduced herein should provide valuable
tools for determining the optimal nesting vectors for many
different correlated materials, and how these evolve with
doping, temperature, impurity scattering, etc.

In commenting on the calculation of TBPS, Becca, Toc-
chio, and Sorella2 summarized earlier attempts to character-
ize the phase diagram of the model: “Remarkably, all these
numerical approaches give very different results for the
ground-state properties of this simple correlated model. In
fact, there are huge discrepancies for determining the bound-
aries of various phases but also for characterizing the most
interesting nonmagnetic insulator.” Here, we have presented
two additional phase diagrams in HF and GA+RPA approxi-
mations. A key point is that with increasing U the first insta-
bility is generically to an incommensurate phase controlled
by Fermi-surface nesting. For larger U the FS is fully
gapped, nesting is unimportant, and the only stable magnetic
phases are the two commensurate phases found by TBPS.
For the rest our phase boundaries agree with TBPS except
for the spin liquid phase which is beyond the capabilities of
a simple mean-field approximation. We note that the incom-
mensurate phases are important in making contact with ex-
periments on hole-doped cuprates and possibly also in other
systems such as doped Fe-pnictide and Fe-chalcogen super-
conductors.
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